A Bit About Doses
The UV-C doses listed below have been documented to inactivate the following microorganisms by 99% (2-log reduction). Millijoules per square centimeter describe a certain amount of energy over a certain amount of time. UV-C lamps produce incident energies of 253.7 nanometers, which destroys the DNA structure of pathogens in the following categories:
Bacterium | UV-C Light Dose (mJ/cm2) |
---|---|
Agrobacterium lumefaciens | 8.50 |
Bacillus anthracis (anthrax veg.) 8 | 8.70 |
Bacillus anthracis (anthrax spores)* 8 | 46.20 |
Bacillus megatherium Sp. (veg) 8 | 2.50 |
Bacillus megatherium Sp. (spores) 8 | 5.20 |
Bacillus paratyphosus 4, 7 | 6.10 |
Bacillus subtilis 8 | 11.0 |
Bacillus subtilis (spores) 8 | 22.0 |
Campylobacter 8 | 2.10 |
Clostridium tetani | 23.10 |
Clostridium botulinum 12 | 11.20 |
Clostridium difficile | 16.0 |
Clostridium perfringes 13 | 95.0 |
Corynebacterium diphtheriae 8 | 6.50 |
Dysentery bacilli 3, 4, 6, 7 | 4.20 |
Eberthella typhosa 8 | 4.10 |
Enterococcus faecalis 8 | 8.60 |
Escherichia coli 8 | 6.60 |
Legionella bozemanii | 3.50 |
Legionella dumoffill | 5.50 |
Legionella gormanil | 4.90 |
Legionella micdadei | 3.10 |
Legionella longbeachae 8 | 3.0 |
Legionella pneumophila (Legionnaire’s Disease) 8 | 12.30 |
Leptospira canicola (infectious jaundice) 1, 7 | 6.0 |
Leptospira interrogans 8 | 6.0 |
Listeria monocytogenes 8 | 3.0 |
Micrococcus candidus 4, 7 | 12.30 |
Micrococcus sphaeroides 1, 4, 5, 7 | 15.40 |
Mycobacterium tuberculosis 8 | 10.0 |
Neisseria catarrhalis 1, 4, 7 | 8.50 |
Phytomonas tumefaciens 1, 4, 7 | 8.50 |
Proteus vulgaris 1, 4, 7 | 6.60 |
Pseudomonas aeruginosa (environ. strain) 8 | 10.50 |
Pseudomonas aeruginosa (lab. strain) 8 | 3.90 |
Pseudomonas fluorescens 4, 7 | 6.60 |
Rhodospirillum rubrum | 6.20 |
Salmonella enteritidis 3, 4, 7 | 7.60 |
Salmonella paratyphi (Enteric Fever) 6 | 6.10 |
Salmonella typhimurium 8 | 5.70 |
Salmonella typhi (Typhoid Fever) 6 | 7.0 |
Sarcina lutea 1, 4, 5, 7 | 26.40 |
Serratia marcescens 8 | 6.160 |
Shigella dysenteriae (Dysentery) 8 | 4.20 |
Shigella flexneri (Dysentery) 6 | 3.40 |
Shigella paradysenteriae 8 | 3.40 |
Shigella sonnei 8 | 7.0 |
Spirillum rubrum 1, 4, 5, 7 | 6.160 |
Staphylococcus albus 8 | 5.720 |
Staphylococcus aureus 8 | 6.60 |
Methicillin-resistant Staphylococcus aureus (MRSA) 8 | 6.50 |
Staphylococcus epidermidis 6 | 5.80 |
Streptococcus hemolyticus 8 | 5.50 |
Streptococcus lactis 1, 3, 4, 5 | 8.80 |
Streptococcus pyogenes | .80 |
Streptococcus salivarius | 4.20 |
Streptococcus viridans 3, 4, 7 | 3.80 |
Vibrio comma (Cholera) 3, 6 | 6.50 |
Vibrio cholerae 8 | 6.50 |
Yersinia Enterocolitica 8 | 4.20 |
Virus | UV-C Light Dose (mJ/cm2) |
---|---|
Adenovirus Type 3 3 | 4.50 |
Bacteriophage 1, 3, 4, 5, 7 | 6.60 |
Coxsackievirus 8 | 6.30 |
Enterovirus 70 9, 10, 11 | 10.0 |
Echovirus 1 9, 10, 11 | 17.0 |
Echovirus 2 9, 10, 11 | 14.0 |
Echovirus 12 9, 10, 11 | 13.0 |
Echovirus 30 9, 10, 11 | 13.0 |
Infectious Hepatitis (Hepatitis A) 8 | 8.0 |
Influenza 8 | 6.60 |
Norovirus 8 | 15.0 |
Poliovirus 1 9, 10, 11 | 17.0 |
Rotavirus 8 | 24.0 |
SARS-CoV-2 (COVID-19) 8 | 5.0 |
Tobacco mosaic 2, 4, 5, 7 | 440.0 |
Protozoan | UV-C Light Dose (mJ/cm2) |
---|---|
Chlorella vulgaris (algae) 1, 2, 3, 4, 7 | 22.0 |
Cryptosporidium hominis 8 | 5.80 |
Cryptosporidium parvum 8 | 3.0 |
Blue-green Algae 8 | 420.0 |
E. hystolytica | 84.0 |
Giardia lamblia (cysts) 8 | 100.0 |
Nematode Eggs 5 | 40.0 |
Paramecium 1, 2, 3, 4, 5, 7 | 200.0 |
Toxoplasma gondii 8 | 13.0 |
Mold | UV-C Light Dose (mJ/cm2) |
---|---|
Aspergillus amstelodami | 77.0 |
Aspergillus flavus 1, 4, 5, 7 | 99.0 |
Aspergillus glaucus 4, 5, 7 | 88.0 |
Aspergillus niger (bread mold) 8 | 226.0 |
Botrytis cinerea 16 | 110.0 |
Mucor mucedo | 77.0 |
Mucor racemosus (A & B) 1, 3, 4, 5, 7 | 35.20 |
Oospora lactis 1, 3, 4, 5, 7 | 11.0 |
Penicillium chrysogenum | 56.0 |
Penicillium digitatum 4, 5, 7 | 88.0 |
Penicillium expansum 8 | 22.0 |
Penicillium roqueforti 1, 2 , 3, 4, 5 | 26.40 |
Podosphaera macularis 15 | 16.90 |
Rhizopus nigricans (cheese mold) 3, 4, 5, 7 | 220.0 |
Rhizopus stolonifer 14 | 191.0 |
Yeast | UV-C Light Dose (mJ/cm2) |
---|---|
Baker’s Yeast 1, 3, 4, 5, 6, 7 | 8.80 |
Brewer’s Yeast 1, 2, 3, 4, 5, 7 | 6.60 |
Candida auris 8 | 32.0 |
Common Yeast Cake 1, 4, 5, 7 | 13.20 |
Saccharomyces cerevisiae 8 | 13.20 |
Saccharomyces ellipsoideus 4, 5, 7 | 13.20 |
Saccharomyces sp. 2, 3, 4, 5, 7 | 24.0 |
- “The Use of Ultraviolet Light for Microbial Control,” Ultrapure Water, April 1989.
- William V. Collentro, “Treatment of Water with Ultraviolet Light – Part I,” Ultrapure Water, July/August 1986.
- James E. Cruver, Ph.D., “Spotlight on Ultraviolet Disinfection,” Water Technology, June 1984.
- Dr. Robert W. Legan, “Alternative Disinfection Methods – A Comparison of UV and Ozone,” Industrial Water Engineering, March/April 1982.
- Rudolph Nagy, “Research Report BL-R-6-1059-3023-1,” Westinghouse Electric Corporation.
- Myron Lupal, “UV Offers Reliable Disinfection,” Water Conditioning & Purification, November 1993.
- Bak Srikanth, “The Basic Benefits of Ultraviolet Technology,” Water Conditioning & Purification, December 1995.
- Sensitivity of Bacteria, Protozoa, Viruses, and Other Microorganisms to Ultraviolet Radiation. Journal of Research of the National Institute of Standards and Technology, Volume 126, Article No. 126021. August 20, 2021.
- Comparative Inactivation of Enteroviruses and Adenovirus 2 by UV Light. ASM Journals, Applied and Environmental Microbiology, Vol. 68, No. 10, October 1, 2002.
- UV Dose Required to Achieve Incremental Log Inactivation of Bacteria, Protozoa and Viruses. IUVA News, Vol. 8, No. 1, March, 2006.
- Ultraviolet Germicidal Irradiation Handbook: UVGI for Air and Surface Disinfection. Wladyslaw Kowalski. Springer-Verlag Berlin Heidelberg, 2009.
- Inactivation of Group I and Group II Clostridium botulinum Spores by Ultraviolet Irradiation in Water. International Journal of Food Microbiology, Volume 395. June 2023.
- Performance Targets for Reclaimed Water: A Case Study. Water Science & Technology Vol 88 No 4, 1131 doi: 10.2166/wst.2023.258
- Effects of ethanol and ultraviolet-c treatments on inactivation of Rhizopus oryzae spores which cause postharvest rot. Gülsüm Ebru. Food Science and Technology, July–Sept. 2019.
- Ultraviolet Light for Suppression of Powdery Mildew (Podosphaera Macularis) and Botrytis Fruit Rot (Botrytis Cinerea) Of Strawberry. Paulo Pinto De Mello Neto, University of Florida, December 2021.
- Cultivation Facilities: UV-C’s Role in Protecting Crops and System Efficiency. Wladyslaw Kowalski, Daniel Jones. Engineered Systems Magazine, June 6, 2018
* Approximate – Various sources may report different inactivation dosages.
Disclaimer: The information contained here is based upon data collected by Atlantic Ultraviolet Corporation and is believed to be correct. However, no guarantee or warranty of any kind, expressed or implied, is made with respect to the information contained here. Information is subject to change without notice.